

Thermomechanical Measurements for Energy Systems (MENR)

Measurements for Mechanical Systems and Production (MMER)

A.Y. 2015-16

Zaccaria (Rino) Del Prete

We will now analyze more in depth each one of the *functional blocks* of the general *measurement chain* ...

In the industry and in most modern measurement applications, the *measurement chain is electric* and the *information* passes through the different stages as **voltage signal** or as a **current !**

Despite the enormous technological advancements of the last 30 years, the main <u>electrical visualizer instruments</u> can still be included in only **three** classes:

- 1. The *galvanometer*
- 2. The *oscilloscope*
- 3. The *digital voltmeter*

The <u>analog</u> OSCILLOSCOPE →

Analog oscilloscope is the older type and can <u>instantaneously</u> display on the screen the waveform of the input signal !

The *periodic input signal* is combined on the fluorescent screen with an *internal sawtooth (sweep) signal* !

A trigger synchronizes the two signals !

Acceleration and collimation of the electron beam !

Sawtooth (sweep) and sinusoidal signal combination on the CRT screen !

spazio

Digital OSCILLOSCOPE ...

The digital oscilloscope does the same tasks as the *analog* scope (and much more) but it is actually a *digital voltmeter* that samples the input signal and displays it on a VGA screen !

We will now study the most important *signal manipulation circuits* used in measurement instruments :

In modern and complex industry measurement system, the signal outputted by the transducer is almost always an *electrical signal* **v** or **i** for which, most of the time, we need to <u>enhance the information content</u> (the **intensity of the measurand**) !

It is always possible to measure a <u>voltage with an</u> <u>amperometer</u> and a <u>current with a voltmeter</u> ...

The rectifier diode :

a) The **SCR diode** works here as a <u>half-wave rectifier</u> !

b) The *Gretz bridge* with 4 SCR diodes works here as a *full- wave rectifier* !

The low-pass "RC" circuit

Let's study the *two electric circuits*

input (voltage) signal: $v_i = (R + X_C) \cdot i$ output (voltage) signal: $v_o = X_C \cdot i$

the current is $i = \frac{v_i}{R + X_C}$ and the output voltage: $v_o = X_C \cdot \frac{v_i}{R + X_C} = \frac{v_i}{\frac{R}{X_C} + 1}$ but $X_C = \frac{1}{j\omega C}$ is the *capacitive reactance*, therefore the output/input ratio is : $\frac{v_o}{v_i} = \frac{1}{j\omega RC + 1}$ Considering $\omega_c = \frac{1}{RC} = \frac{1}{\lambda}$ the output/input ratio is also: $\frac{v_o}{v_i} = \frac{1}{j\omega\lambda + 1}$ We can calculate the modulus of the previous complex function :

And the phase delay: $\varphi = arctg(-\omega\lambda)$

 $G = \frac{v_o}{v_i} = \frac{1}{\sqrt{\left(\frac{\omega}{\omega_c}\right)^2 + 1}}$

the *gain* !

We recognize the *frequency response* of a simple 1st order electric signal manipulation stage !

for
$$\omega = 0$$
 $G = 1$
 $\omega \rightarrow \infty$ $G = 0$
 $\omega = \omega_c$ $G = \frac{1}{\sqrt{2}}$

The RC circuit is a *low-pass filter* (*one pole Butterworth*

filter) with a -3 db cut-off frequency:
$$f_c = \frac{1}{2\pi RC}$$

Note that for $|j\omega CR| >> 1$ which is $\omega >> \frac{1}{CR} = \omega_c$

the *output signal* is also the "integral" of the input signal:

$$v_o(t) = \frac{1}{\lambda} \cdot \frac{1}{j\omega} v_i(t)$$

The high-pass "CR" circuit

The *two electric circuits* equations now are:

input (voltage) signal: $v_i = (X_C + R) \cdot i$

output (voltage) signal:

$$v_{o} = R \cdot i$$

which now result in : $v_o = R \cdot \frac{v_i}{X_c + R}$ with the same notations: $X_c = \frac{1}{i\omega C}$ $\omega_c = \frac{1}{RC} = \frac{1}{\lambda}$ The output/input ratio is : $\frac{v_o}{v_i} = \frac{R}{X_c + R} = \frac{j\omega CR}{1 + j\omega CR} = \frac{j\omega\lambda}{1 + j\omega\lambda}$

It is also a **1**st order electric signal manipulation stage with a <u>gain</u> of :

For
$$|j\omega CR| \ll 1$$
 or $\omega \ll \frac{1}{CR} = \omega_c$
we get $G = \frac{v_o}{v_i} \cong j\omega CR \ll 1$
or $v_o(t) = \lambda \cdot j\omega \cdot v_i(t)$ the output signal is
the "derivative" of the input signal !

if we consider, for example, a sinusoidal signal

 $v_i(t) = Vsen\omega t = Ve^{j\omega t}$ and we *derivate* and *integrate* it :

 $(j\omega) \rightarrow$ is a <u>derivative operator</u>

 $\left(\frac{1}{j\omega}\right)$

 \rightarrow is an <u>integration operator</u>

$$\frac{dv_i(t)}{dt} = \frac{dVe^{j\omega t}}{dt} j\omega \cdot Ve^{j\omega t} = (j\omega) \cdot v_i(t)$$

$$\int v_i(t)dt = \int V e^{j\omega t} dt = \frac{V}{j\omega} \cdot e^{j\omega t} = \left(\frac{1}{j\omega}\right) \cdot v_i(t)$$

The operational amplifier OA :

We will <u>not</u> study the inner electronic circuits of the OA but the important <u>operational features</u> it offer for the measurements !

Ideal OA characteristics :

Amplification Input impedance Otput impedance Band width Offset voltage $\begin{array}{l} \mathsf{A} \rightarrow \infty \quad (10^7) \\ \mathsf{Z}_{\mathsf{i}} \rightarrow \infty \quad (10^{10} \,\Omega) \\ \mathsf{Z}_{\mathsf{o}} \rightarrow 0 \quad (100 \,\Omega) \\ \mathsf{BW} \rightarrow \infty \\ \mathsf{V}_{\mathsf{io}} \rightarrow 0 \end{array}$

The open loop OA can amplify a voltage signal $V_o = A \cdot (V_+ - V_-)$ but NOT over its supply voltages !

If we have $V_{cc} = \pm 10V$ and $A = 10^7$ Then $\pm 10V = 10^7 \cdot (V_+ - V_-)_{MAX}$

and $(V_{+} - V_{-})_{MAX} = \frac{20V}{10^7} = 2\,\mu V$ is the

maximum input signal the OA can handle!

The OA goes into *saturation* for:

 $|V_i| = |V_+ - V_-| > 2\mu V$

The real *open-loop frequency response* curve is determined by the *Gain Bandwidth Product (GBP)* ...

$$20 \log(A)$$
 or $20 \log \frac{V_{out}}{V_{in}}$ in dB

At the virtual earth summing junction we have:

input signal: $V_i = R_i \cdot i_i$ output signal: $V_o = R_f \cdot i_f$

The current at the virtual earth point is: $i_i + i_f = 0$ And because $i_f = -i_i$ we have

 $V_{-} \cong V_{+} = 0$

$$V_o = -R_f i_i = -R_f \frac{V_i}{R_i}$$

which is the *static characteristic curve* of the device and gives also the *GAIN* of the amplifier:

The Operational Amplifier <u>CAN NOT</u> be used as an amplifier in the *open loop configuration* !

Therefore, we must *connect two resistors* at the terminals as showed in the figure, realizing the *inverting operational Amplifier* configuration:

To get a "positive" signal amplification we have to switch to the *non-inverting operational amplifier* configuration:

Because of the "high input impedance" of the OA device, there is *virtually no current* entering the + terminal of the OA and we have now: $V_{-} \cong V_{+} = V_{i}$ and $i_{f} = i$

So, the output signal can be written as $V_o = V_f + V_i$ where $V_f = R_f \cdot i_f$ and $V_i \cong V_- = R_i \cdot i$

In the end we have:
$$V_o = R_f i_f + V_i = R_f i + V_i = R_f \frac{V_i}{R_i} + V_i$$

And the *static characteristic curve* now is:

with a *positive GAIN* !

Both configurations have *much lower amplification* than $10^6 - 10^7$ however the amplification "can be designed" by choosing the two resistance values ! Even if the <u>non-inverting configuration</u> may seem preferable, the <u>inverting configuration</u> has important applications ...

The voltage summing OA :

Here we wish to sum two voltages V_a and V_b

From the inverting OA characteristic curve, we have: $V_o = -\frac{R_f}{R_i}V_i = -R_f i_i$

vith
$$i_i = \frac{V_i}{R_i} = i_a + i_b = \frac{V_a}{R_a} + \frac{V_b}{R_b}$$

If we design the circuit inputs with the two resistance values being equal: $R_a = R_b = R$

We can simplify the above equation and we obtain : *input voltages* !

$$V_o = -\frac{R_f}{R} \left(V_a + V_b \right)$$

V

which is the *sum of the two*

Note that summing two voltages means physically to sum the two input currents !

The <u>active low-pass filter (integrator)</u> :

The gain of the inverting OA is:
$$v_o = -\frac{Z_f}{Z_i}v_i$$

with $Z_i = R_i$ and $Z_f = X_{Cf} = \frac{1}{j\omega C_f}$
Therefore $v_o = -\frac{1/j\omega C_f}{R_i} \cdot v_i = -\frac{1}{j\omega} \cdot \frac{1}{C_f R_i}v_i = -\frac{1}{j\omega} \cdot \omega_c \cdot v_i$

the *output signal* is the <u>electric integral</u> of the input signal !

If we wish to amplify the output, then we have to put an extra resistance R_f on the feedback arm and the extra gain will be : $G = R_f / R_i$

The <u>active high-pass filter (derivative)</u> :

The gain is still:
$$v_o = -\frac{Z_f}{Z_i}v_i$$

with $Z_i = X_{Ci} = \frac{1}{j\omega C_i}$ and $Z_f = R_f$
so $v_o = -\frac{R_f}{1/j\omega C_i}v_i = -j\omega \cdot C_i R_f \cdot v_i = -j\omega \cdot \frac{1}{\omega_c} \cdot v_i$ the electric
derivative

Consider now that the OA accepts TWO voltages at the input terminals $V_{+} = V_{2}$ and $V_{-} = V_{1}$ both referred to earth, and amplifies its difference: $V_{o} = A(V_{2} - V_{1})$... But this is true in the IDEAL case ! In the reality, there are <u>TWO slightly different amplifications</u> at the inputs: $V_{o} = A_{2}V_{2} - A_{1}V_{1}$...

This situation can be effectively described by the *differential input*: $V_d = V_2 - V_1$ and the *common mode input*: $V_c = \frac{V_1 + V_2}{2}$ which is the <u>mean distance from the earth reference</u> of the two input voltages.

For an ideal OA we would have $A_1 = A_2 = A$ and the OA would amplify only the differential input, completely eliminating the common mode input !

This situation can be effectively described by the *differential amplification*: $A_d = \frac{A_1 + A_2}{2}$ which operates on V_d and by the *common mode amplification*: $A_c = A_2 - A_1$ which operates on V_c ² To minimize this problem the OA must be designed with a high A_d and a very small A_c which means $A_1 \approx A_2$

The ratio between the two amplifications is an important <u>quality parameter</u> of the OA, the <u>Common Mode</u> <u>Rejection Ratio</u>: $CMRR = \frac{A_d}{A_c}$ often expressed in logarithmic scale

Values range from 60 dB up to 120 Db for high quality OA ...

$$CMRR = 20\log\frac{A_d}{A_c}$$

The Instrumentation Amplifier IA :

The most employed amplifier in measurements is designed with two stages:

- 1. A very high input impedance stage ($10^{10} \Omega$)
- 2. A differential amplification stage

It has generally a very high **Common Mode Rejection Ratio** (> 100 dB) which makes it suitable to amplify *floating signals* $(v_2 - v_1) \dots$

The (differential) **GAIN** is :

$$G = \frac{v_o}{v_i} = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1} \right)$$

The Carrier AC Amplifier :

The *Carrier Amplifier* is an <u>AC amplifier</u> which does NOT amplify <u>DC signals</u> or <u>components</u> !

It is designed on the "signal modulation and demodulation" principle of radio transmission !

The low frequency (f_s) signal is modulated by the carrier frequency (f_c) which is the only frequency the amplifier is able to amplify !

A *phase sensitive demodulator* and a *low pass-filter* return an amplified low frequency signal !

Demodulation

Carrier

Demodulater Signal.

The <u>Wheatstone Bridge</u> :

Two resistances r and r' are connected in parallel and a *galvanometer* G is connected in a bridge configuration across the two resistances in the points A and B ...

We move now the point A and B on the resistances so to have <u>zero current</u> though the galvanometer, which means also: $V_A = V_B$

In this situation we identified 4 resistances : R_1 , R_2 , R_3 , R_4 for which we can write the following equations:

$$V_{CA} = V_{CB} \longrightarrow R_1 I_1 = R_4 I_2$$
$$V_{AD} = V_{BD} \longrightarrow R_2 I_1 = R_3 I_2$$

Making the ratio of the two equations, we get: $\frac{R_1}{R_2} = \frac{R_4}{R_2}$ or $R_1R_3 = R_2R_4$

the *bridge equilibrium equation* !

No current through the bridge means also $V_A - V_B = 0$ therefore, in practical application, we can substitute the *galvanometer* with a *millivoltmeter* !

The *Wheatstone Bridge* is a "zero method" electric network used for resistance measurements:

If $R_x = R_1$ is unknown, we equilibrate the bridge by operating on R2 and, knowing the values of R_2 , R_3 , R_4 , we get:

$$R_x = R_1 = \frac{R_2 R_4}{R_3}$$

However, this is NOT the main use of the Wheatstone Bridge ...

We might have a resistance R_1 that changes slightly its value ΔR_1 for physical reasons ...

It is possible to read this small change directly on the voltmeter indicator but, to do so, we need to know the **bridge graduation curve** (or <u>static characteristic equation</u>): $V_{AB} = f(\Delta R_1)$

If we consider for simplicity a bridge with 4 equal resistances: $R_1 = R_2 = R_3 = R_4 = R$ and a variation ΔR_1 only on the resistance R_1 , we get:

The complete *Wheatstone Bridge characteristic curve* :

 ΔR_1 Δe ER

which is clearly NON linear !

However, if the variation $\Delta R_1 << R$ is

really <u>very small</u>: $\frac{\Delta R_1}{R} < 0.01$

Then, the denominator of the graduation curve can be approximated with "1"

$$\frac{1}{2}\frac{\Delta R_1}{R} << 1$$

and the characteristic equation has been linearized !

<u>Linearized</u> Wheatstone Bridge characteristic curve !

Same result if the only resistance with a small variation ΔR_2 would have been R_2 on the second arm of the bridge:

negative because R2 is in the negative term of the equilibrium equation: $R_1R_3 - R_2R_4 = 0$

In the case of simultaeous small variations of all 4 resistances of the Wheatstone Bridge, we would get:

Δe	_ 1	$\left(\Delta R_{1}\right)$	ΔR_2	ΔR_3	ΔR_4
E	$^{-}4$	\overline{R}	R	\overline{R}	\overline{R}

The *Full Wheatstone Bridge characteristic curve* ! (note the sign alternations ... very important property ...)