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We will now analyze more in depth each one of the functional blocks of the general measurement chain …
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In the industry and in most modern measurement applications, the measurement chain is electric and the 
information passes through the different stages as voltage signal or as a current !

Despite the enormous technological advancements of the last 30 years, the main electrical visualizer instruments 
can still be included in only three classes:
1. The galvanometer
2. The oscilloscope
3. The digital voltmeter

The analog OSCILLOSCOPE  →  



Analog oscilloscope is the older type 
and can instantaneously display on the 
screen the waveform of the input 
signal !
The periodic input signal is combined 
on the fluorescent screen with an 
internal sawtooth (sweep) signal !

A trigger synchronizes the two signals !



Acceleration and collimation of the electron beam !

Vertical deflection of the beam by the horizontal plates !



Sawtooth (sweep) and sinusoidal signal 
combination on the CRT screen ! 



Digital OSCILLOSCOPE …

The digital oscilloscope does the same tasks as the 
analog scope (and much more) but it is actually a 
digital voltmeter that samples the input signal and 
displays it on a VGA screen !
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We will now study the most important signal manipulation circuits used in measurement instruments :

In modern and complex industry 
measurement system, the signal 
outputted by the transducer is almost 
always an electrical signal v or i for 
which, most of the time, we need to 
enhance the information content (the 
intensity of the measurand) !

It is always possible to measure a voltage with an 
amperometer and a current with a voltmeter …



The rectifier diode :

a) The SCR diode works here 
as a half-wave rectifier !

b) The Gretz bridge with 4 
SCR diodes works here as a 
full- wave rectifier !



The low-pass “RC” circuit

Let’s study the two electric circuits

input (voltage) signal: 

output (voltage) signal: 
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the current is and the output voltage:  

but  is the capacitive reactance, therefore the output/input ratio is : 

Considering the output/input ratio is also: 
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We can calculate the modulus of the previous complex function : the gain !

And the phase delay:  

We recognize the frequency response of a simple 1st order electric signal manipulation stage !
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The RC circuit is a low-pass filter (one pole  Butterworth 

filter) with a  – 3 db cut-off frequency: 

Note that for which is 

the output signal is also the “integral” of the input signal:
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The high-pass “CR” circuit

The two electric circuits equations now are:

input (voltage) signal: 

output (voltage) signal: 

  iRXv Ci 

iRvo 

which now result in : with the same notations:

The output/input ratio is : 

It is also a 1st order electric signal manipulation stage with a gain of :
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For or 

we get 

or the output signal is 
the  “derivative” of the input signal !
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The operational amplifier OA :

We will not study the inner electronic circuits of 
the OA but the important operational features
it offer for the measurements !  

Ideal OA characteristics : 

Amplification A → ∞   (107)
Input impedance Zi → ∞   (1010 )
Otput impedance Zo → 0   (100 )
Band width BW → ꝏ
Offset voltage Vio → 0



The real open-loop frequency response curve is determined by 
the Gain Bandwidth Product (GBP) …
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The open loop OA can amplify a 
voltage signal 
but NOT over its supply voltages !

If we have  Vcc = ±10V and   A = 107

Then 

and is the 

maximum input signal the OA can 
handle! 
The OA goes into saturation for:    
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The Operational Amplifier CAN NOT be used as an 
amplifier in the open loop configuration !

Therefore, we must connect two resistors at the 
terminals as showed in the figure, realizing the 
inverting operational Amplifier configuration:

At the virtual earth summing junction we have:

input signal:
output signal:  

The current at the virtual earth point is:
And because we have 

which is the static characteristic curve of the device 
and gives also the GAIN of the amplifier: which is negative !
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To get a “positive” signal amplification we have to switch to the non-inverting operational amplifier configuration:

Because of the “high input impedance” of the OA device, 
there is virtually no current entering the + terminal of the OA 
and we have now:  and 

So, the output signal can be written as  
where and  

In the end we have:  
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And the static characteristic 
curve now is:

with a positive GAIN !











 1

i

f

io
R

R
VV

Both configurations have much lower 
amplification than 106 – 107 however the 
amplification “can be designed” by choosing 
the two resistance values !
Even if the non-inverting configuration may 
seem preferable, the inverting configuration 
has important applications …  



The voltage summing OA :

Here we wish to sum two voltages Va and Vb

From the inverting OA characteristic curve, we 
have: 
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If we design the circuit inputs with the two resistance values being equal: 

We can simplify the above equation and we obtain : which is the sum of the two 
input voltages !

Note that summing two voltages means physically to sum the two input currents !
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The active low-pass filter (integrator) :
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Therefore

the output signal is the electric integral of the input signal ! 
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If we wish to amplify the output, then we have to put an extra resistance Rf on the feedback arm and the extra 
gain will be :

if RRG 

The active high-pass filter (derivative) :

The gain is still: 
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Consider now that the OA accepts TWO voltages at the input terminals
V+ = V2 and  V- = V1 both referred to earth, and amplifies its difference:

… But this is true in the IDEAL case !
In the reality, there are TWO slightly different amplifications at the inputs:

…

 2 1oV A V V 

2 2 1 1oV A V AV 

This situation can be effectively described by the differential input : and the common mode 
input : which is the mean distance from the earth reference of the two input voltages.

For an ideal OA we would have and the OA would amplify only the differential input, 
completely eliminating the common mode input ! 

This situation can be effectively described by the differential amplification : which operates 
on Vd and by the common mode amplification : which operates on Vc

To minimize this problem the OA must be designed with a high Ad and a very small Ac which means  A1 ≈ A2 

The ratio between the two amplifications is an important quality parameter of the OA, the Common Mode 
Rejection Ratio : often expressed in logarithmic scale  

Values range from 60 dB up to 120 Db for high quality OA …
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The Instrumentation Amplifier IA :

The most employed amplifier in measurements is 
designed with two stages: 
1. A very high input impedance stage (1010 Ω)
2. A differential amplification stage 

It has generally a very high Common Mode 
Rejection Ratio  (> 100 dB) which makes it 
suitable to amplify floating signals (v2 – v1) …

The (differential) GAIN is : 
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The Carrier AC Amplifier :

The Carrier Amplifier is an AC amplifier which 
does NOT amplify DC signals or components !

It is designed on the “signal modulation and 
demodulation” principle of radio transmission !

The low frequency (fs) signal is modulated by 
the carrier frequency (fc) which is the only 
frequency the amplifier is able to amplify !

A phase sensitive demodulator and a low pass-filter return an amplified low frequency signal  !



The Wheatstone Bridge :

Two resistances  r and r’ are connected in parallel and 
a galvanometer G is connected in a bridge configuration 
across the two resistances in the points A and B … 

We move now the point A and B on the resistances so 
to have zero current though the galvanometer, which 
means also:   

BA VV 

In this situation we identified 4 resistances :  R1 , R2 , R3 , R4 for which we can write the following equations:

CBCA VV   → 
2411 IRIR   

BDAD VV   → 2312 IRIR   

Making the ratio of the two equations, we get:  or   the bridge equilibrium equation !
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No current through the bridge means also therefore, in practical application, we can substitute 
the galvanometer with a millivoltmeter ! 

0 BA VV

The Wheatstone Bridge is a “zero method” electric network 
used for resistance measurements: 
If is unknown, we equilibrate the bridge by 
operating on R2 and, knowing the values of  R2 , R3 , R4 ,
we get: 

However, this is NOT the main use of the Wheatstone
Bridge …

We might have a resistance R1 that changes slightly its value  
ΔR1 for physical reasons … 

1RRx 

3

42
1

R

RR
RRx 

It is possible to read this small change directly on the voltmeter indicator but, to do so, we need to know the 
bridge graduation curve (or static characteristic equation):    

If we consider for simplicity a bridge with 4 equal resistances:  and a variation  ΔR1

only on the resistance R1, we get: 
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The complete Wheatstone Bridge characteristic curve :  which is clearly NON linear !
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However, if the variation is

really very small: 

Then, the denominator of the graduation 
curve can be approximated with “1” 

and the characteristic equation has been 
linearized ! 
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Linearized Wheatstone Bridge characteristic curve !



Same result if the only resistance with a small variation ΔR2 would have been R2 on the second arm of the bridge: 

negative because R2 is in the negative term of the equilibrium equation: 

In the case of simultaeous small variations of all 4 resistances of the Wheatstone Bridge , we would get: 

The Full Wheatstone Bridge characteristic curve !   ( note the sign alternations … very important property …)
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